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Abstract 
    Buildings are a major source of energy consumption. In the United States, 

buildings are responsible for more than 70% of all power consumption. Over 40% 

of this building power consumption is from the Heating, Ventilation, and Air 

Conditioning (HVAC) systems. Modern technologies such as building Energy 

Storage Systems (ESS), renewable energy sources, and advanced control algorithms 

allow for so-called Smart Buildings to increase energy efficiency. Smart Buildings 

further benefit from existing in a Smart Grid environment, where information such 

as pricing and anticipated power load is sent over two way communitcation between 

the grid operator and the power consumer. 

 The traditional control systems for these HVAC systems are often simple and do 

not exploit the principles of optimal control. This study applies Model Predictive 

Control (MPC) and ESS to the problem of controlling a Smart Building in a Smart 

Grid environment. 

Simulations are performed for various optimal control objective functions. These 

objectives include price minimization, energy minimization, and an introduced 

Building to Grid (B2G) index optimization. The B2G optimization aims to both 

decrease the price of power for the consumer while avoiding large spikes in power 

consumption to maintain a steady load profile which benefits the grid operator. The 

results show that MPC has potential for large performance increases in Building 

Energy Management, while meeting the constraints for B2G integration. 
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   Chapter 1
 

1 Introduction 
 

Increasing the efficiency of energy consuming systems is an important issue in our 

increasinly energy-conscious world. Buildings are a major energy comsuming 

sector, accounting for more than 70% of the power consumption in the United 

States[1]. Of this, 40% of bulding power consumption is due to the Heating, 

Ventilation, and Air Conditioning (HVAC) system. This large section of power 

consumption has been a topic of active research into ways to increase the energy 

efficiency and reduce emissions by employing advanced technology and control 

techniques. 

1.1  Smart Building Case Studies 
 

A building that takes advantage of these emerging technologies is referred to as a 

smart building. Smart buildings may include advanced Building Energy 

Management Systems (BEMS), renewable energy sources such as solar and wind 

power, and Energy Storage Systems (ESS) such as stationary batteries and thermal 

storage. The BEMS can have many features which contribute to the building’s 

performane. The focus of this thesis will be on designing BEMS control software 

which improves the performance of the building’s HVAC system.  

Additionally, studies have applied the BEMS towards sceduling applicance power 

loads, and controlling the building lighting load based on occupancy modeling. This 

is because the HVAC system is both a relatively large power load, and is 

controllable. 
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Tashtoush et al [2] introduced a component-based model for the control of an 

HVAC system. The model consists of the energy use of the heating coil, humidifier, 

fan, mixing box, cooling and dehumidifying coils, and the energy loss through both 

the ducts and the room the HVAC operates in. The energy use in heating the room is 

modeled to be dependent on only the room temperature, wall inner temperature, and 

humidity. The control algorithm developed had the goal of keeping temperature 

constant while the outdoor temperature, lighting, and occupancy of the room varied.  

Fong et al [3] developed a component-based model of an air conditioning system. 

Their model describes mathematical models for the energy use of the chiller and the 

cooling coil. These models are based both on the physical properties of the 

components, and their nominal efficiency. The model was used in the genetic 

evolutionary optimization to develop an energy efficient control scheme.  

 

Muratori et al [4] also developed a physics-based model for HVAC power 

consumption. Their model allows of the building to either use an all-electric heating 

system, or have an electrical fan, which circulates heat generated by a furnace. The 

power consumption for the fan is modeled separately from the heat generation. The 

heat transfer in the system is described with a simple thermodynamic model, where 

heat can move between the HVAC, building, and the environment. The power 

consumption is based on the model for the fan, and the model for the electric 

heating system.  

 

Laio et al [5] developed a physical building model for estimating the indoor 

temperature. The model predicted the temperature based on the thermal properties 

of the HVAC system (including a water heated radiator) and building components, 

the power supplied to the HVAC system, and weather conditions.  
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Cai et al [6] developed a component model-based optimization for the power 

consumption of the condenser water loop in an HVAC system. The power 

consumption is the sum of the power consumptions of the chillers, pumps, and fans. 

The model uses the nominal specifications (power consumption, heat capacity) of 

the components along with adjustment factors, which account for the actual 

properties when the system is not running at maximum load or ideally. A genetic 

algorithm optimization is performed on the model to find an optimal control 

strategy. 

Risbeck et al [7] controlled a building combined heating and cooling system using 

Mixed Integer Linear Programming (MILP). The model included binary on-off 

states and multivalue discrete states for the operator of each component. The results 

were compared to a Linear Programming (LP) approach. 

 

1.2  Smart Grid Case Studies 
 

The impact that a smart building has on energy efficieny can further increase by 

incorporating the building into a smart grid. In a smart grid, information can be sent 

through two way communication between the power grid distributor and the 

consumer. 

One beneficial concept incoporated with the smart grid is dynamic pricing. With 

dynamic pricing, the price that consumers pay for electricity is dependent on the 

demand. During peak hours where the demand is high, the price is high. During off 

peak hours where the demand on the grid is low, the price is low.  

Dynamic pricing is intended to incentize consumers to balance the power load. By 

making the dynamic pricing available to the consumer, the BEMS can shift the 

building’s scheduable power loads to decrease the price of the consumer. Loads that 

can be scheduled, such as the HVAC and some applicances, can have the majority 
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of the load during hours where the price is low. This is advantageous for both the 

grid operator and the consumer. The consumer can decrease the cost of the energy 

they need. The grid operator will have a more balanced load as some of the load is 

scheduled to off peak hours. 

Samadi et al [8] considered a smart grid with two way dynamic pricing 

communication. The model used a real time pricing model which showed benefits 

for both the consumer and energy provider.  

Nyeng and Ostergaard [9] tested their controller with both a radiative space heater 

and a water tank heating system. They used both systems to heat a scale model 

room, and compared the cost savings for a constant temperature thermostat to their 

model, using both forecasted and actual pricing data from a Danish utility company. 

They found that, with both heaters, savings of more than 7% in cost occurred. The 

standard deviation in the temperature was found to be higher when using their price 

varying control model than without price response. 

 

Lu et al [10] considered ways of balancing the grid load using HVAC control. They 

considered a model for residential HVAC systems. The study considered the ability 

to use HVAC systems for ancillary grid services. Kim et al[11] proposed a model 

for frequency regulation to regulate energy from unpredictable renewable resources 

in a smart grid. Hirata et al[12] proposed a real-time pricing model for the smart 

grid which increased grid stability. 

1.3 Model Predictive Control for HVAC systems 
 

Model predictrive control (MPC) can be used to benefit the performance of the 

building’s HVAC system. The advantage of MPC is that it allows the system to 

anticipate future changes and disturbances to the system dynamics. It also allows the 

system to adjust to any disturbances over time. 
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MPC has been used in previous building HVAC control studies. Haung et al [13] 

combined linear MPC with a neural network for building HVAC control. The neural 

network handled nonlinearities present in the building model. The hybrid model was 

tested and validated on a commericial building. 

Vasak et al [14] presented an MPC algorithm for controlling the HVAC system of a 

residential household. The resistor capacitor (RC) thermal model is used to model 

the building.  

Maasoumy et al[15] presented a building thermal model which used Kalman 

filtering to update model parameters over time to account for modeling 

uncertaininty and disturbances. The model was validated using data from a 

Michigan Tech office building. The model was then used for MPC and Robust 

Model Predictive Control (RMPC) control simulations. 

 Razmara et al[16] performed bidirectional optimization of a building HVAC system 

in a smart grid. The study introduced the building to grid (B2G) index to find a 

balanced optimization which both reduced grid peak load and HVAC run cost. The 

control algorithm included options for curtailing load based on the operational limits 

of the smart grid. The results found 25% savings when compared to an unoptimized 

rule-based controller (RBC). 

Maasoumy et al [17] presented an MPC approach for controlling the HVAC system 

of a university campus building. The model focuses on controlling the mass flow 

rate of the air in the HVAC system. 

Wei et al [18] considered the opitimization of a smart building that included 

optimization of the HVAC system, PHEV charge scheduling, and battery energy 

storage. MPC was used to formulate the control algorithm. Peak energy demand and 

overall energy cost were decreased through use of battery storage and MPC. 
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Galus et al [19] studied utilizing MPC to control a smart grid with PHEVs and 

building HVAC systems. Nowak et al [20] compared MPC to using a fuzzy logic 

control algorithm when performing optimal control of an HVAC system. 

Halvgaard et al [21] presented a MPC algorithm for smart building control. The 

model was developed for a residential building with floor heating systems. The 

controller used dynamic pricing information to shift power loads to times with low 

energy cost. Rehrl et al [22] used MPC along with feedback linearization to control 

a component level model of an HVAC system. 

Kelman et al [23] used MPC to study a nonlinear HVAC control problem. A 

problem formulation for the nonlinear system is presented. Local optima were found 

to the nonlinear optimization problem. 

Ma et al [24] showed a comparison of a simulated and experimental MPC 

implemetation. The MPC logic to control an HVAC system was tested through 

simulation and then validated through experimental implementation on a university 

campus building. 

1.4  Technical Scope of this Thesis 
 

The studies available in current literature have studied many aspects of smart 

building control and interaction with the smart grid. However, there are 

shortcomings in the literature which this thesis will address. The objectives of this 

thesis are to establish the technical base required to formulate the building MPC 

problem, then fill the following gaps in the current scientific literature. 

Various studies have designed MPC algorithms for building HVAC systems. 

However, to the author’s knowledge, very little research has compared the relative 

effectiveness of different control actuators for the same building HVAC system. 

Thie study will compare controlling the HVAC system by varying the air mass flow 
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rate, supply air temperature, and a combination of mass flow rate and supply 

temperature. Scenarios with both dynamic pricing and flat pricing will be 

considered. Additionally, the effect of adding battery energy storage to the building 

HVAC system is presented. 

This study will also build upon previous research [16] covering integrating smart 

building control into a smart grid. Work on B2G integration is currently limited. 

This study will build upon the results in [16] to perform B2G control with a 

comparison of different control actuation modes for the HVAC system, and 

comparisons of the B2G objective function to other grid and consumer focused 

objective functions. 

The scope of this work will encompass simulations based upon a Michigan 

Technological University office building. The physical model is based upon and 

validated with this building. Then, MPC problems are defined using this model as 

the plant. 

1.5 Organization of Thesis 

The organization of this thesis will now be outlined. The preceding chapter has 

introduced the concept of smart control of smart buildings in a smart grid 

environment. The next chapter will introduce the physical theory and mathematical 

techiqnues required to simulate MPC for a building’s HVAC system. In Chapter 3, 

building HVAC energy optimization results will be presented, comparing mutiple 

control cases for the system. Chapter 4 will introduce aspects of the smart grid into 

the control simulation, and strike a balance between optimizing the benefit for the 

single building and the grid as a whole. Finally, Chapter 5 will offer conclusions on 

the study and potential paths for future work 
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  Chapter 2

2 Modeling and Optimization 
 

2.1 Building Thermal Model 
 

The goal in this chapter is to develop the mathematical tools required to model and 
control the HVAC system of a smart building. First we will develop the physical 
model for heat transfer in the building. 

The building being modeled is Michigan Technological University’s Lakeshore 
Center. The building is used for administrative offices and offices leased to local 
businesses. The Lakeshore Center was chosen for this study because its construction 
and inhabitance schedule are typical for an office building. Additionally, the 
recorded database of the building’s temperature and power consumption was 
available through the Building Energy Management System (BEMS) for use as 
model validation.   

 

 

Figure 2.1: Lakeshore Center- Building Test Bed in this Thesis 
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A physics-based model for heat transfer in this building will be developed. The 
model will be based on fundamental heat conduction, convection, and radiation 
equations: 

 𝑄!"#$ =
𝑇! − 𝑇!
𝑥!!
𝑘𝐴

 (2.1) 

 

 𝑄!"#$ =
𝑇! − 𝑇!
1
ℎ𝐴

 (2.2) 

 

              𝑄!"# =   𝜀𝜎𝐴𝑇!"#!                (2.3)  

 

Here 𝑄!"#$ is the conductive heat flow, T1 is the temperature of one node in the 
thermal model, T2 is the termperature of the adjacent thermal node, A is the surface 
area,  k is the conductive heat transfer coefficient, h is the convective heat transfer 
coefficient, xth is the thickness of the material, 𝜀 is the emissivity of the radiating 
surface, 𝜎 is the Stefan-Bltzmann constant, 𝑄!"# is the radiative heat flow, and Trad 
is the temperature of the radiating surface. 

The conductive and convective resistances for a thermal circuit can be given by !!!
!"

 

and !
!!

 . 

Using these fundamental equations, the convection of heat through the air in the 
rooms, and the conduction of heat through the walls and windows, will be modeled. 
The heat transfer model will consider a typical room in the Lakeshore center. Other 
rooms surround three sides of the room. The fourth wall is adjacent to the outside 
and exposed directly to outdoor temperatures. This room is serviced by a heat pump 
HVAC system, and an energy model for this HVAC system will also be developed. 
This single room will be scaled up to model a building with 30 rooms. 
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Figure 2.2 shows a schematic of the thermal model. The room temperature is 
dependent on the surrounding room temperatures, the outdoor temperature, and the 
thermal properties of the walls and windows. 

 

 

Figure 2.2: System schematic. The model represents the heat transfer of a room in 
the Lakeshore Center. Adapted from [15]. 

 

The model type is referred to as an RC thermal model. The model is directly 
analogous to a Resistor-Capacitor (RC) electrical circuit. Each component of the 
system (walls, air in the rooms) has a thermal resistance and capacitance, which 
dictates the dynamics of how heat flows through the building. Once these material 
properties are known, a system of differential equations can be written which 
describes the heat transfer over time. The RC thermal model is commonly used for 
modeling heat transfer in buildings. 
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Figure 2.3: RC heat transfer model. Thermal resistance and capacitance of each 
wall, room, and window combine to form a thermal circuit. Adapted from [15]. 

The heat transfer through any material can be modeled by considering the thermal 
resistance and capacitance of the materials. The model is based on the thermal 
resistance and capacitance of the walls and rooms of the building. For multi-paned 
windows and layered walls, the thermal properties of each layer are combined in 
series to give an overall thermal resistance and capacitance. The heat transfer 
through a wall is: 

               𝐶!",!
!!!",!
!"

= 𝑇𝑟𝑘−𝑇𝑤𝑖,𝑗
𝑅𝑤𝑖,𝑗𝑖𝑛

𝑘∈𝑁 𝑤  𝑖,𝑗                                       (2.4) 

Here Cwi,j is the specifice heat capacity of the wall between rooms i and j, Twi,j is the 
temperature of the wall between rooms i and j, Trk is the temperature in room k,  and 
Rwi,j is the thermal resistance of the wall between rooms i and j. 

The rate of temperature change is based on the adjacent node temperatures, and the 
resistance and capacitance of the wall. This is the heat transfer model that will be 
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used as the basis of the dynamic model for the control model. The additional pieces 
that must be added into the model are the inputs from the HVAC system.   

 

 

2.2 HVAC model 
 

In this section the energy model for the HVAC system will be developed. This will 
complete the model for heat transfer in the Lakeshore Center. 

The Heating system in the Lakeshore center is a ground source heat pump (GSHP). 
A GSHP uses thermal energy from below ground. It takes advantage of the 
relatively constant temperature of the ground below a few meters. During cold 
months, heat is extracted from the relatively warm ground by the heat pump. Figure 
2.4 shows a schematic of the system.  

 

Figure 2.4: HVAC system setup. The GSHP supplies heat, which heats air, which is 
then circulated into the room by a blower in the HVAC duct. Adapted from [15]. 
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The GSHP supplies hot water to a heat exchanger in the ventilation duct. The supply 
air temperature is increased by passing through the heat exchanger, and then into the 
room to supply heat. 

For control purposes a simple model will be adopted for the electrical energy 
consumption of the HVAC system. This model is based on the nominal coefficient 
of performance (COP) of the system. The energy consumption of the HVAC system 
is modeled as 

𝐶𝑂𝑃 ∗𝑚!!𝑐! 𝑇!! − 𝑇!!                                    (2.5) 

Here COP is the coefficient of performance, 𝑚!! is the mass flow rate of air from 
the HVAC system in room i, ca is the specific heat capacity of the air, Tsi is the 
supply air temperature from the HVAC system in room i, and Tri is the air 
temperatuer in room i.  

The room temperature is dependent on the surrounding room and outdoor 
temperatures, the internal wall temperatures, the thermal properties of the walls and 
windows surrounding the room, and the temperature of the air supplied by the 
HVAC system (supply temperature) and the mass flow rate of the air coming from 
the HVAC system. It also depends on any internal heat sources within the room. By 
combining Equations 2.4 and 2.5, the model for temperature in room i with an 
HVAC system is: 

𝐶!!
!!!!
!"
= 𝑇𝑘−𝑇𝑟𝑖

𝑅𝑖,𝑘𝑖
𝑘∈𝑁𝑟𝑖

+𝑚𝑟𝑖𝑐𝑎 𝑇𝑠𝑖 − 𝑇𝑟𝑖                           (2.6) 

Depending on the control mode of the HVAC system, the mass flow rate, the supply 
temperature, or both may be variable. The model will consider a building with 30 
zones, which are each serviced by an HVAC system. 

These differential equations describe the behavior of the system. With the physics 
based heat transfer model and energy consumption model, we can develop a system 
of differential equations for the heat transfer dynamics of the building. In order to 
develop the control model, the differential equations will be translated into a state 
space equation. 
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2.3  State Space Model 
 

For control purposes the model is converted into a set of state space equations. We 
define the state equation: 

𝑥 = 𝑥!, 𝑥!, 𝑥!, 𝑥!, 𝑥! = 𝑇!!,   𝑇!!",𝑇!!",𝑇!!",𝑇!!"   !                 (2.7) 

Here x is the system state, Tr1 is the room temperature, Tw1j is the wall temperature 
between node 1 and the adjacent nodes for j={2,3,4,5}. 

Then, using equation (2.6) along with this state definition, the state space model is 
defined. Using standard techniques we find that the state model is: 

𝑥! = −4 ∗
𝑥!

𝐶!𝑅! +
2

𝐶!𝑅! (𝑥! + 𝑥! + 𝑥! + 𝑥!)+𝑚!!𝑐! 𝑇!! − 𝑥!  

𝑥! =
!!

!!!!
− !

!!!!
𝑥!+ !!

!!!!
 

𝑥! =
!!

!!!!
− !

!!!!
𝑥!+ !!

!!!!
                                                   (2.8) 

𝑥! =
!!

!!!!
− !

!!!!
𝑥!+ !!

!!!!
 

𝑥! =
!!

!!"
!!!"!

− ( !
!!"
!!!"!

+ !
!!"
!!!"!

)𝑥! +
!!

!!"
!!!"!

 

Here Cw is the thermal capacitance of the inner walls, Rw is the thermal resistance of 
the inner walls, 𝐶!"!  is the thermal capacitance of the wall between the outside and 
the room, 𝑅!"!is the thermal resistance of the wall between the outside and the 
room, and the remaining symbols are as previously defined. 

Then by defining matrices with the appropriate dimension, the final state space 
model is 

 

 𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑑 
 

(2.9) 

 𝑦 = 𝐶𝑥 
 

(2.10) 

where, 
 
 𝑢 =   𝑇! 

 
(2.11) 
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 𝑑 = [𝑇!!  ,𝑇!!  ,   𝑇!!  ,   𝑇!!] 
 

(2.12) 

 𝑦 =   𝑇! 
 

(2.13) 

Here the terms in the disturbance vector d, Td, are the temperatures of the adjacent 
zones. For full details of the state space model, see Appendix A. 

The standard control model for this heat pump is to consider the supply air 
temperature as a control variable and the mass flow rate of the supplied air as a 
constant. This leads to the linear model presented in Equation 2.8. Alternatively, the 
supply temperature can be kept constant with a controllable mass flow rate. This 
problem formulation simply reverses the position of mass flow rate and supply 
temperature in the state space equation formulation. 

Under mass flow rate control, the input vector is defined as: 

𝑢 =   𝑚! 

And the A matrix is adjusted appropriately. 

In both of these situations, the system dynamics are linear. The dynamics can be 
formed into a system of linear equations. Finally, we can consider the case where 
both the mass flow rate and supply temperature of the HVAC system air supply are 
controllable. In this case, the system dynamics are nonlinear, which complicates the 
mathematical formulation and solution. Specifically, notice that the system state 
now depends on the product of two variable system inputs (the notable terms are 
bolded for emphasis): 

𝑥! = −4 ∗
𝑥!

𝐶!𝑅! +
2

𝐶!𝑅! (𝑥! + 𝑥! + 𝑥! + 𝑥!)+𝒎𝒓𝒊𝑐! 𝑻𝒔𝒊 − 𝑥!  

Due to these products between control variables, this nonlinear control problem is 
more difficult to solve than the two previous problems, because it cannot be solved 
using standard Linear Programming (LP) techniques. A linear system of matrix 
equations such as Equation 2.9 cannot be defined for this system. A solver will be 
chosen for this study, which is capable of solving nonlinear programming (NLP) 
optimization problems. 
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2.4 Model Validation 
 

The mathematical model that has been developed up to this point needs to be 
validated. If the model does not accurately represent the system dynamics, any 
simulation results using them may not be valid. The values of parameters used for 
this validation are shown in Table 2.1. 

Table 2.1: Parameters for model validation 

Parameter Definition Value 

𝐶! Specific heat capacity of air 1005 
𝐽/𝑘𝑔.𝐾 

𝜌!"# Density of air 1.205 !"
!! 

𝐶𝑂𝑃 Coefficient of performance of HVAC  
heat pump 

3.2 

𝐴! Area of window 3 𝑚! 
𝑇! Thickness of window glass 0.01 𝑚 

𝐾! Conductivity of window glass 0.96 
𝑊/𝑚.𝐾 

𝑅! Density of inner three walls 240 !"
!! 

𝑅! Density of outside wall 2000 !"
!! 

𝐾!" Conductivity of inner three walls 0.048 
𝑊/𝑚.𝐾 

𝐾!"# Conductivity of outside wall 0.72 
𝑊/𝑚.𝐾 

ℎ!" Convection coefficient for inner three 
walls 

5 𝑊/𝑚!.𝐾 

ℎ! Convection coefficient for outside wall 20 𝑊/𝑚!.𝐾 
𝐶! Heat storage capacity of walls 800 𝐽/𝑘𝑔.𝐾 

𝐴!"   (𝑤ℎ𝑒𝑟𝑒  𝑗 = 1,3) Surface area of long inner wall 27.54 𝑚! 
𝐴!"   (𝑤ℎ𝑒𝑟𝑒  𝑗 = 2) Surface area of shorter inner wall 22.95 𝑚! 
𝐴!"    𝑤ℎ𝑒𝑟𝑒  𝑗 = 4  Surface area of outer wall 19.95 𝑚! 

𝐿!"  Thickness of inner three walls 0.15 𝑚 
𝐿!"# Thickness of outer wall 0.70 𝑚 

𝑚! Mass flow rate of air from the HVAC 
system 

0.52 !"
!"#
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The model was validated using data collected from the Lakeshore Center. The 
Lakeshore Center’s Building Management Software collects temperature data for all 
zones in the building and the temperature of air supplied by the HVAC system. The 
input temperature from the HVAC system and room temperature were measured 
over a one-week period. To validate the model, the same inputs were applied to the 
model and the system dynamics were simulated. The simulated and measured 
temperature profiles can be found in Figure 2.5.  

 

Figure 2.5: Validation of the building HVAC model. The temperature profile from 
the simulation closely matches the measured data. 

The results in Figure 2.5 validate the system model. The simulated temperature 
profile is very similar to the measured values. The validated model can now be used 
to design the control algorithm. 
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2.5  Optimization and Optimal Control 
 

The field of optimization is concerned with finding the minimum or maximum point 
of a function that satisfies a set of constraints. In optimal control, the goal is to 
choose control inputs for a dynamic system that optimize the value of a cost 
function. The theoretical basis for optimal control is based on the Calculus of 
Variations. A typical optimal control problem takes the form: 

min 𝑓 𝑥  
 

(2.14) 

𝑠. 𝑡.    𝑔! 𝑥   ≤ 0            𝑓𝑜𝑟  𝑖 = 1,… ,𝑚 
 

(2.15) 

ℎ! 𝑥   = 0            𝑓𝑜𝑟  𝑗 = 1,… ,𝑛 (2.16) 
 

𝑥   ≤ 0  𝑜𝑟  𝑥 ≥ 0 (2.17) 
Here f(x) is the objective or cost function. h(x) and g(x) are constraints imposed on 
the problem. The constraints can take the form of equality or inequality equations 
that must be satisfied. The goal is to find the minimum of f(x) which is within these 
constraints. If no solution is found which satisfies the constraints, the problem is 
infeasible. 

2.6 Model Predictive Control (MPC) 
 

Model predictive control utilizes optimal control theory to implement a real-time 
controller. A typical optimal controller will predetermine the optimal solution 
offline; e.g., if the objective is to optimize the HVAC system’s behavior over the 
next 24 hours, the optimal control problem will be solved at the beginning, and then 
implemented over the 24 hours. With MPC, the controller inputs are chosen in real 
time over the 24-hour period. This allows the controller to more easily adapt to any 
disturbances. Specifically, this study will utilize receding horizon control. Figure 2.6 
illustrates the receding horizon MPC concept. 
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Figure 2.6: Receding Horizon Model Predictive Control. New Prediction Horizons 
are formed over the control domain. Adapted from [25]. 

 

Additionally, MPC allows for the controller to anticipate changes in the system 
dynamics and adapt accordingly. The controller is provided with some forecast of 
disturbances to the system, i.e., a weather forecast in the case of building HVAC 
control. The controller is using foreknowledge of the information when forming the 
optimal control problem, and thus can utilize it to find a more optimal solution. 

An objective function and the problem constraints are formed over the prediction 
horizon. The optimal control problem is then solved, and the first input from the 
solution is applied. The system dynamics then iterate to the next time step. A new 
prediction horizon is formed and another optimal input is solved. 
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2.7 Battery Model 
 

This section will develop a model for the dynamics of a battery used in 
conjunction with the HVAC system. The battery is used as an Energy 
Storage System (ESS), where energy can be stored by charging the battery 
and then the battery is discharged to power the HVAC system. 

Here, an LG Chem 5kWh Air Cooled Battery from Michigan Tech’s Energy 
Mechatronics Lab (EML) is used. The model is based on performance maps 
that are available for the battery. These maps dictate the maximum charge 
and discharge power achievable by the battery at a given state of charge 
(SOC) and temperature. The power maps are shown in Figure 2.7.  

 

Figure 2.7: Power Map for LG Chem 5kWh Air Cooled Battery. Data from 
[26]. 

The maximum discharge and charge power of the battery is determined by 
the SOC of the battery. The SOC is calculated using the following difference 
equation [18]: 
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𝑆𝑂𝐶!!!!!|! =   𝑆𝑂𝐶!!!|! +
!!!!"#$!!!"#$!!"#$

!  !!
                (2.18) 

Here SOC is the state of charge, Pcharge is the power charging the battery, Pdischarge is 
the power discharging from the battery, V is the voltage across the battery, and CB is 
the capacity of the battery. 

 

2.8 Numerical Methods 
 

            The control problems in this thesis will be solved using the YALMIP solver in 
MATLAB. YALMIP is a freely available toolbox for solving model predictive 
control problems in MATLAB. It has the advantage of simplifying the process of 
translating the formal mathematical statement of the optimization problem into 
MATLAB code. Details on YALMIP and its usage are available in [27]. 

           The solver used in this study in YALMIP is the IPOPT solver. Since the control 
problem formulation is nonlinear when both supply temperature and mass flow rate 
are controlled, the solver must be able to solve nonlinear programming (NLP) 
optimization problems. The solver is able to solve NLP control problems. The 
IPOPT solver uses inner boundary value techniques to solve nonlinear control 
problems. More information on IPOPT is available in [28]. 

With the system modeling developed and the theory of the optimization problem 
reviewed, the energy optimization problem can now be formed and solved.  
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  Chapter 3
 

3 Optimal Control of Building Energy Cost 
 

Buildings account for over 70% of power consumption in the United States. Of this, 
over 40% is used by the buildings’ Heating, Ventilation, and Air Conditioning 
(HVAC) system. Traditional HVAC control algorithms are often simple on-off or 
rule based controllers (RBC). Figures 3.1 and 3.2 show the simulated behavior of a 
building where the HVAC system has an RBC. The logic for the controller is the 
same is that used in Michigan Tech’s Lakeshore Center. 

The RBC used followed the following logic. When the temperature in the room was 
within the comfort bounds, the HVAC system supply air temperature was the same 
as the temperature of the air in the room and air was recirculated without heating. 
When the room air temperature was below the allowed bounds, the supply air 
temperature would increase to 32 C. 

 

Figure 3.1: Room Temperature Profile with RBC. 
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Figure 3.2: Electricity Consumption with RBC. 

 

Rule Based Control is simple to implement and can keep the room’s temperature 
within constraints. But, there is a large potential for increasing the systems 
performance. Some shortcomings of the method can be seen in Figures 3.1 and 3.2. 
In Figure 3.1, the room is heated more than necessary to stay within the desired 
temperature constraints, which means more energy is used then is necessary.  
Additionally, the controller does not account for the hourly variations in the cost of 
the energy used. In Figure 3.2, the large spikes in electricity consumption do not 
correspond with hours with the lowest energy cost. In summary, neither the cost nor 
the amount of energy used is optimized.  

By using optimal control these shortcomings of the RBC can be overcome. 
Specifically, the goal in this chapter is to develop an optimal Model Predictive 
Control (MPC) algorithm for the Building Energy Management System (BEMS). 
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3.1  Optimal Control Problem Formulation 
As explained in Chapter 2, the goal in optimal control is to optimize an objective 
function while staying within given constraints. In the case of building HVAC 
control, the objective will be to minimize the price of running the HVAC system. 
The constraints are the upper and lower bounds on room temperature to maintain 
comfort, constraints caused by the capabilities of the HVAC system, and the system 
dynamics. 

As previously explained in Chapter 2, MPC is a practical way to implement optimal 
control on a dynamic system subject to disturbances. Previous studies have utilized 
MPC algorithms for building energy management. 

The optimization problem can be stated as: 

 

min!!,!!{(𝐼! ∙𝑃!"#
! )+ 𝜌( 𝜖! !+ 𝜖!

!
)}                                                                                (3.1) 

 
subject to: 

𝑥!!!!!|! = 𝐴  𝑥!!!|! + 𝐵𝑢!!!|! + 𝐸𝑑!!!|!                                 (3.2) 

𝑦!!!|! = 𝐶  𝑥!!!|!                                                                                                                                (3.3) 

𝒰 ≤ 𝑢!!!|! ≤   𝒰                                                      (3.4) 

𝛿𝒰 ≤ 𝑢!!!!!|! − 𝑢!!!|! ≤   𝛿𝒰                                            (3.5) 

𝑇!!!|! − ℰ!!!|! ≤ 𝑦!!!|! ≤   𝑇!!!|! + ℰ!!!|!                              (3.6) 

ℰ!!!|! ,ℰ!!!|! ≥ 0                                                    (3.7) 

Here 𝑃!"#!  is the hourly dynamic price of electricity, 𝜌 is the weight on the soft 
constraint penalties from the slack variables, and 𝜖! and 𝜖! are the upper and lower 
slack variables. Equations 3.2 and 3.3 present the system dyanmics as defined in 
Section 2.3. 𝒰  and 𝒰 are the lower and upper constraints on the input vector u. 
𝛿𝒰  and 𝛿𝒰 are constraints on the hourly change in the input vector u.  

The objective function is defined using the Energy Index (Ie): 
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𝐼! = 𝑃! 𝑡 + 𝑃! 𝑡 + 𝑃! 𝑡!"
!!!                                             (3.8) 

 

Where 

𝑃! 𝑡 = 𝑚!
! 𝑡 𝑐!,!"# 𝑇! 𝑡 − 𝑇!! 𝑡                                                                                             (3.9) 

𝑃! 𝑡 = 𝑚!
! 𝑡 𝑐!,!"#[𝑇!! 𝑡 − 𝑇! 𝑡 ]                                        (3.10) 

𝑃! 𝑡 = 𝛾 𝑚!
! !                                                                                                                                      (3.11) 

 

Ph is the power consumed to heat the room, Pc is the power consumed to cool the 
room, and Pf is the power consumed by the fan in the HVAC system. Here, 𝛾 is the 
power coeffient for the fan. 

The equality constraints in the optimization problem are representative of the system 
dynamics. In order for the problem to be feasible, the state equations of the system 
dynamics must be true. In this way the system dynamics are implicitly considered 
by the optimization problem. 

There are inequality constraints on the inputs. Some of the inequality constraints are 
due to the physical limitations of the HVAC system. These are the upper constraints 
and the constraint on the difference between consecutive inputs. The lower 
constraint on the input, which determines the minimum allowable mass flow rate of 
air in the optimization problem, is set to meet the ventilation requirements for the 

building. The ventilation constraint 𝑚!"# is implemented to ensure the Air 
Changes per Hour required by ASHRAE standards are met.[29] 

The constraint on the output (room temperature) is to ensure comfort. The 
constraints are based on ASHRAE standards for comfort. [29] The comfortable 
temperature range is tighter during the day when the office is occupied, and relaxed 
at night. 

In order to ensure that the solver finds a feasible solution, slack variables are 
introduced to relax the comfort constraints [15]. In this way, the system is permitted 
to leave the comfort constraints if no feasible solution is available otherwise. A 
penalty term is introduced into the objective function using the slack variables. 
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Tuning the coefficient ρ on this term allows for a tradeoff between price and 
comfort. 

The optimization problem is to minimize the cost of running the HVAC system with 
a time varying price 𝑃!"#! .  Dynamic pricing is a concept where the price of 
electricity varies over the course of the day based on demand. Hours with higher 
energy demands will have higher prices. This study assumes that these prices are set 
24 hours ahead based on the predicted grid load. This 24-hour ahead pricing 
information can be leveraged by the controller to provide price savings to the 
building owner.  

This general problem can be approached in different ways. The HVAC system in 
this building has two possible control variables: The mass flow rate of air into the 
room, and the temperature of the air supplied to the room. Both the mass flow rate 
and temperature can be varied to control the amount of heat supplied to the room. 
Three cases will be examined: (i) supply temperature control, (ii) mass flow rate 
control, and (iii) combined supply temperature and mass flow rate control. The 
system will be simulated using these three possible combinations of controls 
variables, and the results will be compared. 
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3.2  Price Minimization with Supply Temperature Control 
 

The system was first simulated in supply temperature control mode. The mass flow 
rate of the HVAC system was set to a constant value and the heat supplied to the 
room was varied through varying the supply temperature of the heat pump. 

The performance in supply temperature control mode was tuned. The cost of 
running the HVAC system varies depending on chosen mass flow rate set point. Too 
high and too low of a set point can increase the cost. Various set points were chosen 
and the system was simulated at each set point. The optimal mass flow rate is found 
through this tuning process. Figure 3.3 illustrates the results of this tuning process. 

 

Figure 3.3:  Tuning Curve for Supply Temperature Control. The Price is optimized 
for this mode when Mass Flow Rate is set to 0.2 kg/s. 

The optimal set point for the mass flow rate was found to be 0.2 kg/s. The monthly 
cost to run the HVAC system increases if the mass flow rate is changed in either 
direction. The cost increases drastically as the mass flow rate is increased. This is 
because a large amount of air is being recirculated by the HVAC system even when 
very little heat is required by the room. The cost also increases if the mass flow rate 
is decreased. This is because the system’s actuation is not strong enough when the 
mass flow rate is decreased. 

The results of an optimal control simulation over 24 hours with the optimal mass 
flow rate set point is shown in Figure 3.4. These results show a few interesting 
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features of optimal price minimization. Some preheating occurs when prices are 
lower so that the actuation can be low during hours with higher prices. In general 
the room temperature stays close to the lower limit. 

 

 

Figure 3.4: Temperature profile for supply temperature control case. (𝑚! =0.2 kg/s) 

 

The control inputs for the HVAC are shown in Figure 3.5. The mass flow rate is set 
to 0.2 kg/s as chosen by the tuning process. The supply temperature shown is the 
input chosen as the solution to the MPC problem. 
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Figure 3.5: Control inputs for supply temperature control case. 

 

3.3  Price Minimization with Mass Flow Rate Control 
 

The system was next simulated in the mass flow rate control mode. The supply air 
temperature of the HVAC system was set to a constant value and the heat supplied 
to the room was varied through varying the supply temperature of the heat pump. 

As with the previous supply temperature control results, the system was tuned to 
chose the optimal set point. The tuning curve for the constant supply temperature set 
point is shown in Figure 3.6. 
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Figure 3.6: Tuning Curve for Mass Flow Rate Control. The price is minimized for 
this mode when supply air temperature is set to 25 C. 

 

The optimal set point for the temperature was found to be 25 C. The monthly cost to 
run the HVAC system increases if the supply temperature is increased or decreased. 

The results of an optimal control simulation over 24 hours with this supply 
temperature is shown in Figure 3.7. Some preheating occurs when prices are lower 
so that the actuation can be low during hours with higher prices. In general the room 
temperature stays close to the lower limit. 
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Figure 3.7: Temperature profile for mass flow rate control case. 

The control inputs for the HVAC system are shown in Figure 3.8. The supply 
temperature is set to 25 C as chosen by the tuning process. The mass flow rate 
updates every hour as chosen by the optimal control algorithm. 
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Figure 3.8: Control inputs for mass flow rate control case. The constant supply 
temperature value was determined by a tuning process. The mass flow rate values 

are determined in real time by the optimal control algorithm. 

3.4 Price Minimization with Combined Mass Flow Rate and Supply 
Temperature Control (‘Nonlinear’ Case) 
 

With solutions found for the cases with separate mass flow rate and supply 
temperature control, the combined case will now be solved. In this case, both supply 
temperature and mass flow rate of the HVAC system can be updated every hour. 
This has the effect of strengthening the actuators; there is more flexibility in the 
amount of heat transfer in any hour, giving the potential for a more optimal set of 
inputs. This problem also has added computational complexity compared to the two 
previous cases. As previously explained in Section 2., the dynamics of this control 
problem are nonlinear when both mass flow rate and supply air temperature are 
variable. This additional computational complexity makes the problem more 
difficult to formulate and solve, contrasting the previous linear simulations to this 
nonlinear simulation. For convenience the combined mass flow rate and supply 
temperature problem formulation will henceforth be referred to as the nonlinear 
case. 
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Figure 3.9 shows the resulting temperature profile from the combined mass flow 
rate and supply temperature control case. The advantage of this control mode can be 
seen in the supply air temperature profile. The number of hours where the HVAC is 
strongly actuated is decreased compared to the solo supply temperature case.  

 

 

Figure 3.9: Temperature profile for combined supply temperature and mass flow 
rate control. 

 

The control inputs shown in Figure 3.10 show the advantage of the combined 
control case. At times when power is cheap, both the mass flow rate and supply 
temperature increase. Otherwise, both inputs are set to their minimum. These plots 
clearly illustrate that the nonlinear case has the effect of making the actuator 
stronger. 
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Figure 3.10: Control inputs for combined supply temperature and mass flow rate 
control case. 

 

The behavior of the combined control case is also illustrated in Figures 3.11 and 
3.12. They show the dynamic price profile used during the simulation, and the 
HVAC power consumption and run cost at each hour. The strong actuator provided 
by the combined control means that power spikes only occur during hours with low 
price. 
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Figure 3.11: Hourly Power Consumption for nonlinear case.  

 

Figure 3.12: Hourly Cost for nonlinear case. 
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3.5 Control Mode Comparison 
 

A comparison of the above results is shown in Table 3.1 below. 

Table 3.1: Comparison of cost and electricity consumption for all four 
control modes 

Control Mode Mass 
Flow 
Rate 
(kg/s) 

Supply 
Temperature 
(C) 

Monthly 
Cost 

Daily 
Electricity 
Consumption 

Cost 
Saving 
(%) 

Energy 
Saving 
(%) 

RBC .2 (.4) 32 $850 326 kWh - - 

Mass Control Variable 25 $516 242 kWh 39% 25% 

Temperature 
Control 

.2 Variable $420 219 kWh 50% 33% 

Nonlinear Variable Variable $410 210 kWh 52% 36% 

 

The solo mass flow rate control, solo temperature control, and combined mass flow 
rate and temperature control are compared to the results of a typical Rule Based 
Controller (RBC).  

All three MPC control cases show savings compared to the RBC. The combined 
mass flow rate and temperature control case shows the best savings, as expected. 
Having two design variables, which equates to a stronger actuator for the HVAC 
system in this case, allows for more cost savings. 

The mass control case is considerably more expensive than the temperature control 
case. This is because some air must always flow into the zone to meet ventilation 
requirements. So, even during hours when power is expensive, some air must be 
heated to the chosen set point. In the temperature control case, the supply 
temperature can be set equal to the room temperature during hours where power is 
expensive, and air recirculates without heating, which minimizes this problem. The 
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combined case has this same advantage, plus the ability to more strongly actuate by 
increasing both mass flow rate and supply temperature during times with cheap 
power. 

A detailed comparison of the three MPC cases is shown in Figures 3.13 and 3.14.  
These plots compare the hourly power consumption of each case. We once again 
clearly see where the advantage of combined mass flow rate and supply temperature 
control comes from, and the disadvantage of mass flow rate control. Mass flow rate 
control and temperature control must run the HVAC more during hours when price 
is relatively high. The combined control case can restrict actuation to hours with 
relatively price and still remain in temperature bounds, since the HVAC system is 
able to actuate more strongly during those hours. 

 

 

Figure 3.13: Comparison of hourly power consumptions. 
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Figure 3.14: Comparison of hourly run cost. 

 

The previous results show that there is a clear advantage to utilizing optimal control 
for the building’s HVAC system. All three optimal control cases show substantial 
savings compared to the rule based control case.  
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3.6 Price Optimization with Battery Energy Storage 
 

In the preceding results, the cost of running the HVAC system was decreased by 
using an optimal control algorithm. The hardware used in the energy management 
system was not changed from the base RBC case. The next step is to further 
increase the system’s performance by adding an energy storage system to the 
building. 

Adding Energy Storage Systems (ESS) can increase the performance of smart 
buildings. ESS can store energy from renewable energy sources for later use. They 
can also be used to store power from the grid during hours with low price or low 
demand, and then used to power the building during later hours when drawing 
power from the grid would be more expensive. 

Energy storage has been utilized in previous MPC studies. This study will 
incorporate battery energy storage with the combined control of the HVAC’s mass 
flow rate and supply temperature. 

A model was developed to simulate the system with the addition of a battery. The 
model for the LG Chem battery was previously developed and presented in Chapter 
2. The map for this battery’s maximum charge and discharge power was available in 
the battery manual [26]. Using this model, the new optimization problem is: 

min!!,!!{(𝐼! ∙𝑃!"#
! )+ 𝜌( 𝜖! !+ 𝜖!

!
)}                       (3.12)    

 
subject to: 

𝑥!!!!!|! = 𝐴  𝑥!!!|! + 𝐵𝑢!!!|! + 𝐸𝑑!!!|!                      (3.13) 

𝑦!!!|! = 𝐶  𝑥!!!|!                                          (3.14) 

𝑆𝑂𝐶!!!!!|! =   𝑆𝑂𝐶!!!|! +
!!!!"#$!!!"#$!!"#$

!  !!
                         (3.15) 

𝒰 ≤ 𝑢!!!|! ≤   𝒰                                         (3.16) 

𝛿𝒰 ≤ 𝑢!!!!!|! − 𝑢!!!|! ≤   𝛿𝒰                                   (3.17) 

𝑇!!!|! − ℰ!!!|! ≤ 𝑦!!!|! ≤   𝑇!!!|! + ℰ!!!|!                           (3.18) 
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0 ≤ 𝑃!!!"#$!!!|! ≤   𝑃!"#$!!"#$!!!|!                                                                         (3.19) 

0 ≤ 𝑃!"!"!!"#$!!!|! ≤   𝑃!"#$%&'!!"#$!!!|!                              (3.20) 

0 ≤ 𝑃!"#$!!"#$!!!|! ≤   𝑉𝐶!                                       (3.21) 

ℰ!!!|! ,ℰ!!!|! ≥ 0                                               (3.22) 

Here, SOC is the state of charge of the battery, Pcharge is the power to charge the 
battery, Pdischarge is the power discharged from the battery, V is the voltage across the 
battery, CB is the capacity of the battery. PMAXcharge is the upper limit on power to 
charge the battery and PMAXdischarge is the upper limit on the discharge power of the 
battery. Ci is the current of the battery. The remaining symbols share definitions 
with the problem formulation from Equations 3.1 to 3.11. 

Where the objective function is defined using a new Energy Index: 

𝐼! = 𝑃! 𝑡 + 𝑃! 𝑡 + 𝑃! 𝑡 + 𝑃!!!"#$ 𝑡 − 𝑃!"#$!!"#$(𝑡)!"
!!!        (3.23) 

 

Where 

𝑃! 𝑡 = 𝑚!
! 𝑡 𝑐!,!"# 𝑇! 𝑡 − 𝑇!! 𝑡                                 (3.24) 

𝑃! 𝑡 = 𝑚!
! 𝑡 𝑐!,!"#[𝑇!! 𝑡 − 𝑇! 𝑡 ]                                (3.25)   

𝑃! 𝑡 = 𝛾 𝑚!
! !                                                   (3.26) 

 

The system was simulated with the addition of the battery. Combined mass flow rate 
and supply temperature control was chosen since it gave the best performance out of 
the preceding results. 

The room temperature profile is shown in Figure 3.15. The room temperature stays 
within the specified comfort constraints over the 24 hour period shown. There is less 
preheating when compared to the simulations without battery storage. 
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Figure 3.15: Room Temperature profile for ESS simulation 

 

 

Figure 3.16 shows the net energy flow per hour between the grid, HVAC system, 
and battery. This figure illustrates how the battery benefits the system performance. 
The battery is charged at an hour early in the morning when the price is low. At the 
same time, the HVAC system is strongly actuated to preheat the building. Then, the 
battery is used during the day to power the HVAC system, and maintain comfort in 
the room, without drawing large amounts of power from the grid. The battery is then 
charged in the late afternoon when it meets its minimum SOC value. Negative 
energy values in Figure 3.16 represent energy discharging from the battery to power 
the HVAC system. 
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Time (Hours) 

Figure 3.16: System energy flow 

Figure 3.17 illustrates that the demand on the grid for power is concentrated on the 
hours where the price of power is low. The same concentration in power 
consumption was present in the system without the battery. The difference is that 
some of the power is used to charge the battery instead of directly heating the room. 
The power is then used at a later time by the HVAC system. This reduces the 
amount of preheating by the system, which means less energy is wasted heating the 
room more than necessary. This allows for savings in both cost and energy 
consumption. 
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Figure 3.17: Hourly Electricity Consumption with Battery ESS 

The battery’s state of charge (SOC) is shown in Figure 3.18. When the battery is 
charged early in the day, the SOC increases to its upper limit. The battery then is 
used over the next several hours to power the HVAC system, and the SOC 
decreases. The trend in SOC clearly aligns with the power flow of the battery. 

 

Figure 3.18: Battery SOC over the day 
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The cost and energy consumption results are shown in Table 3.2. 

Table 3.2: Results of Price optimization with Battery Energy Storage, 
compared to the RBC results, and MPC with the battery storage system. 

Control 
Mode 

Monthly Cost Daily Electricity 
Consumption 

Cost Saving (%) Energy Saving (%) 

RBC $850 326 kWh - - 

Price 
Control 
with ESS 

$405 209 kWh 52.3% 35.8% 

Price 
Control 

$410 210 kWh 51.7% 35.6% 

 

The results show that the battery storage system is able to reduce the monthly cost 
of running the HVAC system, while increasing the energy efficiency. However, the 
performance increase from energy storage is small compared to the effect of using 
optimal control. These results would show that the control algorithm has a much 
larger impact on the system performance than adding an energy storage system. The 
type of battery being used in the model may be impacting this result, and a battery 
designed explicitly for use in building energy storage could have properties which 
would show better performance. 
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3.7 Comparison Using Energy Cost Function 
A special case of the previous results will be considered. In cases where the price of 
electricity is static instead of dynamic, the problem reduces to optimizing the energy 
consumption. In this case the cost is set to a constant value over the optimization 
domain. 

The optimization problem can be stated as: 

 

min!!,!!{(𝐼!)+ 𝜌( 𝜖! !+ 𝜖!
!
)}                                                                                (3.27) 

 
subject to: 

𝑥!!!!!|! = 𝐴  𝑥!!!|! + 𝐵𝑢!!!|! + 𝐸𝑑!!!|!                                 (3.28) 

𝑦!!!|! = 𝐶  𝑥!!!|!                                                                                                                                (3.29) 

𝒰 ≤ 𝑢!!!|! ≤   𝒰                                                      (3.30) 

𝛿𝒰 ≤ 𝑢!!!!!|! − 𝑢!!!|! ≤   𝛿𝒰                                            (3.31) 

𝑇!!!|! − ℰ!!!|! ≤ 𝑦!!!|! ≤   𝑇!!!|! + ℰ!!!|!                              (3.32) 

ℰ!!!|! ,ℰ!!!|! ≥ 0                                                    (3.33) 

 

The objective function is defined using the Energy Index (Ie): 

𝐼! = 𝑃! 𝑡 + 𝑃! 𝑡 + 𝑃! 𝑡!"
!!!                                             (3.34) 

Where 

𝑃! 𝑡 = 𝑚!
! 𝑡 𝑐!,!"# 𝑇! 𝑡 − 𝑇!! 𝑡                                                                                             (3.35) 

𝑃! 𝑡 = 𝑚!
! 𝑡 𝑐!,!"#[𝑇!! 𝑡 − 𝑇! 𝑡 ]                                        (3.36) 

𝑃! 𝑡 = 𝛾 𝑚!
! !                                                                                                                                      (3.37) 
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Note that the term for dynamic pricing is now absent from the optimization 
problem. All symbols retain their defintions from Equations 3.1-3.11. 

The system was simulated for energy optimization using supply temperature control, 
mass flow rate control, and combined supply temperature and mass flow rate 
control. Figure 3.19 shows a comparison of the daily energy consumption of each 
simulation. 

 

Figure 3.19: Energy optimization comparison 

 

The combined mass flow rate and supply temperature control case has the strongest 
maximum actuation and has the highest peak hourly energy use. The effect of these 
different control modes is compared in Table 3.3. 
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Table 3.3: Comparison of Control Modes for Energy Optimization 

Control Mode Mass 
Flow 
Rate 
(kg/s) 

Supply 
Temperature 
(C) 

Daily Electricity 
Consumption 

Energy Saving 
(%) 

RBC 0.2 Variable 326 kWh - 

Mass Control Variable 25 225 kWh 31% 

Temperature 
Control 

0.2 Variable 200 kWh 39% 

Mass and 
Temperature 
Control 
(Nonlinear 
Case) 

Variable Variable 194 kWh 40.4% 

 

The results show that the combined mass flow rate and supply temperature control 
case has the best performance. As in the price minimization case, the additional 
control variable leads to higher relative performance. Mass control has the worst 
performance of the three optimal control formulations. This is again due to the 
minimum mass flow rate required to meet ventilation requirements. 

A comparison of the price results shown in Table 3.1 and 3.3 highlights the scenario 
where of combined mass flow rate and supply temperature control has the greatest 
advantage. Under dynamic pricing, the nonlinear case has a 2% price advantage 
over the linear supply temperature control problem. In energy optimization with flat 
pricing, the price advantage (which is equivalent with the energy advantage under 
flat pricing) is 1.4%. The nonlinear problem has a greater advantage under dynamic 
pricing. The additional strength of the actuator yields better results in both 
scenarios, but the nonlinear controller shows more promise in a dynamic pricing 
environment. 
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  Chapter 4
 

4 Building to Grid Optimization 
 

4.1 Limitations of Building-level Control 
 

The control algorithm proposed in Chapter 3 was able to successfully decrease the 
cost of running the building’s HVAC system through MPC. But, cost is not the only 
consideration when designing a smart grid. In Figure 4.1, the building load profile 
for the building under price control is shown. This load profile includes the required 
HVAC load, and the base building load from lighting and appliances. Also shown is 
an example of a possible maximum load which can be provided by the electric grid. 
For more information on how the maximum load profile is calculated, refer to [16]. 

 

Figure 4.1: Price control load profile. The maximum feasible power load is violated. 
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In this case, the load violates the maximum allowable load. Since the objective 
function does not consider the size of the peak load in any way, this is not 
surprising. This issue will be motivation to develop a new control algorithm which 
considers the effect of the grid. 

4.2 Grid Integration 
 

Balancing the power load is an important goal for the power distribution grid 
operator. Successful load balance and regulation have a variety of factors. Power 
provided by renewable energy sources (wind, PV panels) is variable and increases 
the complication of the system.  Large peak loads can require extra infrastructure in 
order to fully provide the demanded load. In order to maintain a balanced load, it is 
beneficial to employ load balancing and curtailment strategies.    

In the previous chapter’s results, the objective was focused on providing savings for 
the consumer in the power grid. For example, the objective under price control was 
to maintain temperature comfort constraints while minimizing cost to the consumer. 
This benefits the individual consumer, but does not necessarily benefit the power 
supplier or the performance of the power grid as a whole. 

To study the optimization effects on the grid, a model for building to grid (B2G) 
interaction must be considered. The power grid is modeled as a connected system of 
nodes. Buildings can be connected at any node and draw a load from the grid. This 
system is illustrated in Figure 4.2.  
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Figure 4.2: Grid Model[15]. © 2015 IEEE. 

Another approach is to focus optimization on the performance of the grid as a 
whole. The power supplier benefits if the grid load is relatively flat over time. High 
demand at peak times requires more infrastructure, which is wasted at off-peak 
times. Ideally, demand would be constant, and allow for optimal use of all power 
generation sources at all times. 
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4.3 Load Factor Optimization 
 

In order to achieve this goal, the concept of the load factor will be introduced into 
the optimization. Load factor is defined as 

𝐿𝐹 = !!"#
!!

                                                  ( 4.1) 

 

Where 𝑃!  is maximum power is load and 𝑃!"# is the average power load. In the 
problem formulation, load factor can be maximized by minimizing the infinity norm 
of the building load. To maximize load factor, the MPC problem can be formulated 
as: 

min {𝛽/𝐿𝐹+𝜌( 𝜖! !+ 𝜖!
!
}                            (4.2) 

 
subject to: 

𝑥!!!!!|! = 𝐴  𝑥!!!|! + 𝐵𝑢!!!|! + 𝐸𝑑!!!|!                             (4.3) 

𝑦!!!|! = 𝐶  𝑥!!!|!                                         (4.4) 

𝒰!!!|! ≤ 𝑢!!!|! ≤   𝒰                                      (4.5) 

𝛿𝒰 ≤ 𝑢!!!!!|! − 𝑢!!!|! ≤   𝛿𝒰                                                                                    (4.6) 

𝑇!!!|! − ℰ!!!|! ≤ 𝑦!!!|! ≤   𝑇!!!|! + ℰ!!!|!                              (4.7) 

ℰ!!!|! ,ℰ!!!|! ≥ 0                                            (4.8) 

 

Here 𝛽 is the weight on the load factor in the objective function and LF is the load 
factor. The remaining symbols retain their defintions from Section 3.1. 

Note that price is not considered in this objective function. The objective function 
now only has terms dependent on the infinity norm on the power consumption, and 
a penalty for violation of the room temperature soft constraints. 
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Figure 4.3 shows the room temperature profile for a simulation using the load factor 
optimization algorithim. The overall bulding load is relatively constant compared to 
the previous price and energy optimization simulations. 

Load and Temperature Profiles for Load Factor Objective Function 

 

Figure 4.3: Temperature profile and load profile for Load Factor Control 

 

As expected, the building load profile is very steady when load factor optimization 
is employed. The temperature raises to the daytime minimum and is maintained 
there to maintain a constant load. In Figure 4.4, the electricity consumption used 
under load factor control is shown. 
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Figure 4.4: Electricity Consumption Profile for Load Factor Control 

We can see from the electricity consumption that the consumed power is higher in 
the morning to reach the daytime minimum temperature, in order to maintain the 
comfort constraints. Once this temperature is reached, the load stays constant. 

In Figure 4.5, the load profile for price and load factor optimization are compared. 
The advantage provided to the grid distributor is clear; the balanced load is easier 
for the grid to manage and provide. By using the load factor objective function, the 
nodal load factor of the node being controlled is improved to .85. This results in a 
130% improvement over the nodal load factor of .37 resulting from the price control 
results.  
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Figure 4.5: Comparison of load profiles between price control and load factor 
control 

In Figure 4.6 there is a comparison of the hourly price of running the HVAC 
systems for the cases with price and load factor as the objective function. This 
illustrates the advantage provided by the price control objective function. By using 
load factor control, the monthly cost of running the HVAC system increases from 
$410 to $725. 

The comparison of results between Load Factor and Price optimization is shown in 
Table 4.1 below. 
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Table 4.1: Comparison of Load Factor and Price Optimization Objective 
Functions 

Objective 
Function 

Monthly Cost Node Load 
Factor 

Load Factor $725 ..85 

Price $410 .37 

 

 

Figure 4.6: Comparison of price profiles between price control and load factor 
control 

Under price control the system only actuates during hours with low price. The load 
factor controller maintains a constant load regardless of price, which has a large 
impact on price during peak hours where the dynamic pricing is high. 
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4.4  Building to Grid Integration 
 

The previous results illustrate the tradeoff between load factor and price 
optimization for the smart grid. Maximizing the load factor benefits the distributor, 
but has a negative impact of the price for the consumer. In order to find a solution 
which benefits both the consumer and grid supplier, another approach can be taken 
which strikes a balance between maximizing the load factor and minimizing HVAC 
run cost. The objective function can directly consider both price and load factor, 
with weights on each. The MPC problem in this case is: 

                      min!!,!!{𝛼(𝐼! ∙𝑃!"#
! )+ 𝛽/𝐿𝐹 + 𝜌( 𝜖! !+ 𝜖!

!
)}                         (4.9) 

subject to: 

𝑥!!!!!|! = 𝐴  𝑥!!!|! + 𝐵𝑢!!!|! + 𝐸𝑑!!!|!                             (4.10) 

𝑦!!!|! = 𝐶  𝑥!!!|!                                         (4.11) 

𝒰!!!|! ≤ 𝑢!!!|! ≤   𝒰                                      (4.12) 

𝛿𝒰 ≤ 𝑢!!!!!|! − 𝑢!!!|! ≤   𝛿𝒰                                                                                    (4.13) 

𝑇!!!|! − ℰ!!!|! ≤ 𝑦!!!|! ≤   𝑇!!!|! + ℰ!!!|!                              (4.14) 

ℰ!!!|! ,ℰ!!!|! ≥ 0                                         (4.15)       

Here 𝛼 is the weight on the monatary run cost of the HVAC system. The remaining 
symbols retain their definitions from the load factor control formulation in 4.1-4.8.                                         

By varying the weights in the objective function, the system can be tuned to more 
strongly consider either price or load factor. This tuning process was performed by 
varying the α and β values over a chosen range. The range of values was chosen 
such that the system would maintain a comfortable in-room temperature during the 
optimization. Figure 4.7 shows the HVAC run cost surface over this tuning range. 
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Figure 4.7: Surface of HVAC Run cost over tuning space of objective function 
weights. Points colored red violated the room comfort constraints and were not 

considered as viable solutions. 

 

Increasing the α value in the objective function decreases the run cost, as expected. 
The red region in Figure 4.7 are points where the comfort constraints were not met. 
If price is of higher priority than load factor, this map can be used to choose 
appropriate tuning parameters. 

Figure 4.8 shows the load factor surface over this tuning range.  
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Figure 4.8: Surface of load factor values over space of objective function weights. 
Points colored red violated the room comfort constraints and were not considered as 

viable solutions. 

Increasing the β value in the objective function increases the load factor, as 
expected. The red region in Figure 4.8 are points where the comfort constraints were 
not met. If load factor is the only objective, this map can be used to choose 
appropriate tuning parameters. 

This tuning process can be used to find weights which give optimal performance.  
Some metric must be defined to form the basis for this comparison.  We will define 
the comparative index Inorm: 

𝐼!"#$ = .5  (1− !"
  !"!"#$%#&'

+ (𝐿𝐹!"#$))                          (4.16)                              

where Pr is the cost in dollars to run the HVAC system, Prexisting is the cost to run the 
RBC controller, and LFNode is the nodal load factor. Inorm allows for a fair 
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comparison of the performance between points. The performance metric over the 
tuning space are shown below in Figure 4.9. 

 

 

Figure 4.9: Surface of performance metric values over space of objective function 
weights 

 

The system shows better performance when both α and β are increased. This is 
because the weight on the terms used to measure performance, price and load factor, 
are increasing compared to the weight assigned to the soft comfort constraints. The 
points shown in red are areas where the room temperature comfort constraints are 
not satisfied during the optimization. This occurs as the weights on performance 
increase compared to the constant weight on comfort. Excluding the points where 
comfort constraints were not met, the performance index was highest at the point: 
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The performance of this control mode with these α and β settings can be compared 
to other control modes. Using this same tuning parameters, the controller was 
simulated with the three optimal control modes used in Chapter 3 and the results 
were compared. For solo mass flow rate and solo supply temperature control, the 
same settings were used as in Chapter 3. The results are shown below in Table 4.2. 

Table 4.2: Comparison of B2G results 

Control 
Mode 

Monthly Cost Node Load 
Factor 

Normalized 
Index 

Mass Control $516 .59 .51 

Temperature 
Control 

$493 .74 .60 

Mass + Temp $457 .71 .61 

 

Using the performance index as a metric, combined mass and temperature control 
has the best performance. This is expected, since the combined mass and 
temperature case has an extra control variable when compared to the other two 
simulations, and should at worst have equal results. The combined mass flow rate 
and temperature control results are shown in Figure 4.10. 
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Figure 4.10: Temperature profile results from simulated using tuned B2G control. 
                                     𝛼,𝛽 = (0.3, 4000) 

 

The amount of hours with high actuation is large compared to the price objective 
function. The temperature profile does not always track the lower limit because the 
objective function is not only attempting to minimize price, but also maintain a 
constant load. 

The load profile from the B2G control mode is shown in Figure 4.11. 
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Figure 4.11: Load profile results from simulation using tuned B2G control. 

Using the B2G control mode, the building load stays under the feasible load allowed 
by the grid. This shows the advantage of considering load factor in the objective 
function compared to price control. Price control does not directly consider this 
constraint, so may violate the maximum feasible load. 
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Figure 4.12 illustrates the difference in using the B2G objective function. Since 
price is considered in the objective function, the controller uses more power at times 
when the price is low. Comparing to price control, power load is distributed more 
evenly over these hours. This means that the price increases, but the more even 
distributed load increases load factor. This comprise is the general idea behind the 
B2G index. 

 

 

Figure 4.12: Electricity consumption results from simulation using tuned B2G 
control 
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4.5 Objective Function Comparison 
 

The following figures compare three objective functions: price control, load factor 
control, and the B2G index. The compromise provided by the B2G index is clear. A 
balance is found between prioritizing price and load factor, and both the consumer 
and grid distributor benefit. 

Figure 4.13 shows a comparison of the load profiles under price control, B2G 
control, and load factor control. The load factor control shows a relatively flat load. 
There are very large spikes in the price control load, corresponding to hours with 
cheap power. The B2G controller shows a compromise between these. There is 
more variation in the load than in the load factor load profile, but it eliminates the 
large spikes that occur when load factor is not considered at all.  

  

 

Figure 4.13: Comparison of load profiles with three different MPC controllers 
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Figure 4.14 shows a comparison of the HVAC run cost under price control, B2G 
control, and load factor control. The load factor controller does not consider price, 
so cost becomes large during the hours when price is large. The price controller only 
uses power during hours where the cost is very low. The B2G controller shows a 
compromise between these. The heating schedule is more evenly distributed over 
time than in price control, since price is still considered, the electrical consumption 
becomes small during hours with relatively high price. 

 

Figure 4.14: Comparison of cost of electricity consumption for three different MPC 
controllers 

Using the B2G control mode has multiple benefits for the system performance. The 
system shows price and energy savings compared to rule-based or load factor 
control, which benefit the consumer. The system also avoids the large spikes in the 
hourly power consumption which are present during the price control mode, which 
benefits the grid distributor. This balance makes B2G optimization an attractive 
option for both consumer and power grid distributor. 
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  Chapter 5
 

5 Conclusions and Future Work 
 

5.1 Conclusions  

The goal of this study was to design MPC algorithms to control building HVAC 
systems in a smart grid environment. Building HVAC systems account for a large 
portion of U.S. energy consumption. Using an MPC control algorithm allows to 
building to leverage aspects of Smart Building and Smart Grid technology to 
increase efficiency, benefiting both the consumer and the grid as a whole. 

First, the objective was to design a control algorithm which minimized the cost of 
running the HVAC system. This method relys on foreknowledge of the hourly 
dynamic price of power. 

Three different scenarios of MPC were considered for price minimization. The 
control variables for actuating the HVAC system varied between each of the three 
scenarios. These were mass flow rate control, supply temperature control, and 
combined mass flow rate and supply temperature control. The results show that all 
cases of MPC have performance advantages over rule-based control. Under dyanmic 
pricing, the performance of the system increased by at least 39% under all three 
control modes, when compared to the RBC. Combined supply temperature and mass 
flow rate control shows the best performance out of the three MPC control modes in 
all scenarios. Combined mass flow rate and supply temperature control had a 
performance increase of 2% over supply temperature contol, and a performance 
increase of 13% over mass flow rate control. 

These results show that the extra control variable available in the combined mass 
flow rate and supply temperature control case leads to a lower cost result from the 
optimization. This is because the actuator is stronger during hours when the cost of 
power is low. 

Next a battery storage model was integrated into the smart building simulation. The 
model for the battery was developed and placed into the dynamics of the 
optimization problem. These results show that there is an increase in system 
performance of .6% when battery storage is included, when compared to MPC 
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without battery storage. When compared to RBC, the MPC controller with battery 
storage showed performance increases of over 50%. The system is expected to show 
even further gains if a battery with SOC charateristics designed for building energy 
usage were applied to the problem. 

Next, the objective function was changed from price optimization to energy 
optimization. The goal was to minimize the amount of energy used by the HVAC 
system. Once again, mass flow rate control, supply temperature control, and 
combined supply temperature and mass flow rate control were compared. Under flat 
pricing, the performance of all three MPC control modes exceed that of the RBC by 
over 30%.  These results show that the advantage of having more control over the 
system extends to this case with an energy cost function. The extra actuation 
flexibility afforded the system leads to stronger performance. All MPC cases 
compared favorably to the on-off controller, showing the general advantage of 
optimal model-based control over more traditional control methods for BEMS. 

The scope of the project was further expanded by considering the Smart Building as 
a node in a Smart Grid environment. The previous price and energy optimization 
has clear benefits in cost savings and energy efficiency from the perspective of a 
power consumer. By considering factors such as the peak energy usage, the 
optimization can benefit both the power consumer and the grid operator. 

The optimization problem was formulated to minimize the load factor. These results 
showed that using MPC allowed for the building to use a much more balanced 
amount of energy hour to hour, compared to the traditional controller. This flat load 
profile benefits the power grid. 

Finally, an optimization problem was formulated to benefit both the grid operator 
and energy consumer. In B2G control, the objective is to minimize a weighted 
average of the price of power and the building’s load factor. Weights for this 
objective function were chosen through a tuning process. The results showed that 
using the B2G objective function for MPC showed benefits when compared to using 
the run cost objective function. The B2G controller was able to stay within load 
constraints for the system, while the price contoller was not. The B2G control found 
a balance between price optimization and load factor optimization which benefitted 
both sides. Large peaks were eliminated from the power load, and the profile was 
still scheduled in a way which avoiding power draw during hours with a very high 
price. When comparing the three control modes of supply temperature control, mass 
flow rate control, and combined mass flow rate and supply temperature control 



 
 

 
 68 

when applied to B2G control, combined mass flow rate and supply temperature 
control had the best performance. Combined mass flow rate and supply temperature 
control had a 1.7% performance increase over supply temperature control and a 20% 
performance increase over mass flow rate control. 

5.2 Future Work 

There are interesting ways this work may be expanded upon in the future. The most 
revlavent extensions focus on additional work using energy storage systems and an 
experimental validation of the simulated results. 

The battery storage system showed a small increase in performance during price 
optimization. It may be that larger gain could be found by changing the type of 
battery modeled. The battery chosen may not be the most optimal for the building 
energy storage scenario. A higher capacity battery would likely allow for further 
increases in performance. These simulations with an updated battery model would 
be one extension of this work. 

The building to grid optimization results could also be expanded on. The battery 
storage model could be implemented in this scernario. The B2G index optimization 
with battery storage could be compared to the optimization without battery storage 
to see how the addition of the battery system could benefit the grid as a whole. 

Finally, the results of this study could be experimentally validated. The thermal 
model used has been experimentally validated. The next step is to implement the 
control logic in real-time in an actual Smart Building. 

 

 

 

 

 

 

 

 



 
 

 
 69 

References 
[1] "DOE Building Energy Data Book," 
http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=1.1.4, 2013. Accessed 
August 20, 2015. 
 
[2] S. Tiptipakorn and W. Lee. “A Residential Consumer-Centered Load Control 
Strategy in Real-Time Electricity Pricing Environment”. 39th North American 
Power Symposium: 505-510, 2007.  
 
[3] K. Fong and V. Hanby, and T.T. Chow. “HVAC system optimization for energy 
management by evolutionary programming”. Energy and Buildings, 38(3): 220-231, 
2006 
 
[4] M. Muratori, M, V. Marano, R. Sioshansi,  and G. Rizzoni. "Energy 
consumption of residential HVAC systems: A simple physically-based model". 
Power and Energy Society General Meeting 2012, 1(8): 22-26, 2012. 
 
[5] Z. Liao and A. Dexter. “A simplified physical model for estimating the average 
air temperature in multi-zone heating systems”. Building and Environment, 39(9): 
1013-1022, 2004. 
 
[6] W. Cai, Y. Soh, L. Xie, and S. Li, “HVAC system optimization––condenser 
water loop”. Energy Conversion and Management, 45(4): 613-630, 2004. 
 
[7] M. Risbeck, C. Maravelias, J. Rawlings, and R. Turney. "Cost optimization of 
combined building heating/cooling equipment via mixed-integer linear 
programming". American Control Conference 2015, 1(3): 1689-1694, 2015 

 
[8] P. Samadi, A. Mohsenian-Rad, R. Schober, V. Wong, and J. Jatskevich. 
"Optimal Real-Time Pricing Algorithm Based on Utility Maximization for Smart 
Grid". First IEEE International Conference on Smart Grid Communications 2010, 
4(6):415-420, 2010. 

[9] P. Nyeng and J. Ostergaard. "Information and communications Systems for 
Control-by-Price of Distributed Energy Resources and Flexible Demand". IEEE 
Trans. Smart Grid, 2(2):334-341, 2011. 



 
 

 
 70 

[10] Ning Lu. "Design considerations of a centralized load controller using 
thermostatically controlled appliances for continuous regulation reserves". IEEE 
Power and Energy Society General Meeting 2013, 1(1):21-25, 2013. 

[11] H. Kim and M. Zhu. "Distributed robust frequency regulation of smart power 
grid with renewable integration". American Control Conference 2015, 1(3): 2347-
2352, 2015. 

 [12] K. Hirata, J. Hespanha, and K. Uchida. "Real-time pricing and distributed 
decision makings leading to optimal power flow of power grids". American Control 
Conference 2015, 1(3): 2284-2291, 2015. 

[13] H. Huang, L. Chen, and E. Hu. "A hybrid model predictive control scheme for 
energy and cost savings in commercial buildings: Simulation and experiment”. 
American Control Conference 2015, 1(3): 256-261, 2015. 

[14] M. Vasak, A. Starcic, and A. Martincevic. "Model predictive control of heating 
and cooling in a family house". MIPRO Proceedings of the 34th International 
Convention 2011, 23(27): 739-743, 2011. 

[15] M. Maasoumy, M. Razmara, M. Shahbakhti, and A. Sangiovanni Vincentelli. 
“Handling model uncertainty in model predictive control for energy efficient 
buildings”. Energy and Buildings, 77: 377-392, 2014. 
 
 [16] M. Razmara, G. Bharati, M. Shahbakhti, S. Paudyal, and R. Robinett. 
"Bidirectional optimal operation of smart building-to-grid systems,"American 
Control Conference 2015, 1(3): 288-293, 2015. 

 [17] M. Maasoumy and A. Sangiovanni-Vincentelli. "Total and Peak Energy 
Consumption Minimization of Building HVAC Systems Using Model Predictive 
Control". IEEE Design & Test of Computers, 29(4): 26-35, 2012. 

[18] T. Wei, Q. Zhu, and M. Maasoumy. "Co-scheduling of HVAC control, EV 
charging and battery usage for building energy efficiency". IEEE/ACM 
International Conference on Computer-Aided Design 2014, 2(6): 191-196, 2014. 

[19] M. Galus, S. Koch, and G. Andersson. "Provision of Load Frequency Control 
by PHEVs, Controllable Loads, and a Cogeneration Unit". IEEE Transactions on 
Industrial Electronics, 58(10), 4568-4582, 2011. 



 
 

 
 71 

[20] M. Nowak and A. Urbaniak. "Utilization of intelligent control algorithms for 
thermal comfort optimization and energy saving". 12th International Carpathian 
Control Conference 2011, 25(28): 270-274, 2011. 

[21] R. Halvgaard, N. Poulsen, H. Madsen, and J. Jorgensen. "Economic Model 
Predictive Control for building climate control in a Smart Grid". IEEE PES 
Innovative Smart Grid Technologies 2012, 1(6):16-20, 2012. 

[22] J. Rehrl and M. Horn. "Temperature control for HVAC systems based on exact 
linearization and model predictive control". IEEE International Conference on 
Control Applications 2011, 28(30): 1119-1124, 2011. 

[23] A. Kelman, Y Ma, and F. Borrelli, "Analysis of local optima in predictive 
control for energy efficient buildings". 50th IEEE Conference on Decision and 
Control and European Control Conference 2011, 12(15): 5125-5130, 2011. 

[24] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves. "Model 
Predictive Control for the Operation of Building Cooling Systems," IEEE 
Transactions on Control Systems Technology, 20(3): 796-803, 2012. 

[25] M. Paranjape. “Optimal Control of Buiding Energy With Smart-Grid 
Interaction”. Master’s thesis, Michigan Technological University, 2014. 

[26] 5Kwhr Air Cooled Battery Product Manual. LG Chem. 

[27] J. Löfberg. “YALMIP : A Toolbox for Modeling and Optimization in 
MATLAB”. Proceedings of the CACSD, 2004.  

 [28] A. Wächter and L Biegler. “On the Implementation of a Primal-Dual Interior 
Point Filter Line Search Algorithm for Large-Scale Nonlinear 
Programming”. Mathematical Programming 106(1), 25-57, 2006. 

[29] 2012 ASHRAE handbook. Heating, Ventilating, and Air Conditioning Systems 
and Equipment. American Society of Heating, Refrigerating, and Air Conditioning 
Engineers. 2012. 

 

 



 
 

 
 72 

Appendix A State Space Model 
 
The matrices for the state space model developed in section 2.3 are shown in full 
below. 

𝐴 =
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𝐶 = [1 0 0 0 0] 

 

 

 

 

 

 

 

 

 

 

Appendix B Thesis Files Summary 
 

The following files were used to prepare this thesis. 

Table B.1: MATLAB Simulation Files 

File Name Description 
RBC.m Rule based controller 

simulation 
TempContPrice.m Price optimization with 

temperature control 
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MassContPrice.m Price optimization with 
mass flow rate control 

NonlinContPrice.m Price optimization with 
combined mass flow 
rate and temperature 
control 

ESSPriceMPC.m Price optimization with 
battery energy storage 
model added to HVAC 
system 

TempContEng.m Energy optimization 
with temperature 
control 

MassContEng.m Energy optimization 
with mass control 

NonlinContEng.m Energy optimization 
with combined mass 
flow rate and supply 
temperature control 

LoadFactorMPC.m Load Factor 
optimization with 
combined mass flow 
rate and supply 
temperature control 

B2GMPC.m Building to Grid index 
optimization 

 
 

Table B.2: Input Data Files 

File Name Description 
SI-DataSheet.xls Sensor outdoor 

temperature data from 
Feburary 2012 used as 
input to model. 

Dynamic_Pricing.xls Dynamic Pricing 
Profile 

Base_Load.xls Base power load of the 
building, added to 
HVAC load 

Power.xls Maximum allowable 
power load for each 
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node in grid 
Power_LF.xls System load Factor 

 

 
Table B.3: Date Output Files 

File Name Description 
MassFlowTune.xls Tuning data for supply 

temperature control. 
SupplyTempTune.xls Tuning data for mass 

flow rate control 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table B.4: MATLAB Figure Files 

File Name Description 
RBCTempProf.fig Figure 3.1 
RBCPowerComp.fig Figure 3.2 
TempPriceTempProl.fig Figure 3.4 
TempPriceInputs.fig Figure 3.5 
MassPriceTempProf.fig Figure 3.7 
MassPriceInputs.fig Figure 3.8 
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NonlinPriceTempProf.fig Figure 3.9 
NonlinPriceInputs.fig Figure 3.10 
NonlinPricePower.fig Figure 3.11 
NonlinPriceCost.fig Figure 3.12 
PriceContComparePower.fig Figure 3.13 
PriceContComparePrice.fig Figure 3.14 
ESSEnergyFlow.fig Figure 3.16 
ESSPower.fig Figure 3.17 
ESSBattSOC.fig Figure 3.18 
EnergyCompare.fig Figure 3.19 
LoadViolation.fig Figure 4.1 
LFContTempProf.fig Figure 4.3 
LFContPower.fig Figure 4.4 
PriceLFLoadCompare.fig Figure 4.5 
PriceLFCostCompare.fig Figure 4.6 
TunePrice.fig Figure 4.7 
TuneLF.fig Figure 4.8 
TuneB2G.fig Figure 4.9 
B2GtempProf.fig Figure 4.10 
B2GloadProf.fig Figure 4.11 
B2Gpower.fig Figure 4.12 
CompareB2Gload.fig Figure 4.13 
CompareB2GPrice.fig Figure 4.14 

 
 
 
 
 
 
 
 
 

Table B.5: Image Files 

File Name Description 
Lakeshore.jpg Figure 2.1 
SystemSchem.png Figure 2.2 
RCmodel.png Figure 2.3 
HVACSys.png Figure 2.4 
ModelValidation.jpg Figure 2.5 
MPC.png Figure 2.6 
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PowerMap.jpg Figure 2.7 
SupplyTempControlMassTune.jpg Figure 3.3 
MassControlTempTune.jpg Figure 3.6 
SmartGrid.jpg Figure 4.2 

 

 

 

 


